Skip to main content

Posts

Showing posts from October, 2017

Great Oxidation Event Counterargument

https://www.researchgate.net/profile/Kurt_Konhauser/publication/240493815_Biogeochemistry_Deepening_the_early_oxygen_debate/links/0deec52f59d859ccf6000000.pdf Our opposition claimed that because there was sulfur fractionation in rocks that are 2.5 million years old, and you need oxygen in order for sulfur fractionation to occur, that means that there was most likely a whiff of oxygen at the very very beginning of the great oxidation event. There is an alternative possibility that amorphous ferric oxyhydroxides formed in the photic zone and sank about 200 m to the bottom of the sea floor. There they would transform into haematite. Several scientists question the current idea of anoxia throughout the early and middle Archaean by presenting their views on early ocean oxygenation to deeper waters. This is backed up by how, prior to the entrance of free oxygen ~2.3 billion years ago, electrons were being consumed at a massive rate, and this rate changed when oxygen began to rise. Orga

The Great Oxidation Event Opening Argument

Contrary to the oxygen-rich atmosphere that prevails today, early Earth was characterized by the absence of Oxygen both in the atmosphere and in the ocean. This early Earth possessed blood red oceans (due to the massive amounts of suspended iron in the water), harsh ultraviolet radiation (due to its lack of an ozone), large amounts of Methane, Nitrogen, and Carbon-Dioxide in the atmosphere (caused by continuous volcanic activity), and a thriving single-celled anaerobic population. T his persisted until the Great Oxidation Event , which was the period of time from roughly 2.2 to 2.5 billion years ago (although opinions of this vary), when Oxygen levels a dramatically increased to a never-before-reached amount. Evidence of this event is most obvious when looking at the primordial ocean. In the primordial ocean, the small amounts of Oxygen present in the atmosphere would be absorbed by decomposing organisms or bind with iron in the water to produce iron-oxide, otherwise known as rust